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Problem A. RUN Number

Problem Idea: Eunjae Jin (ai4youej)

Preparation: Eunjae Jin (ai4youej)

Subtask 1 (5 points)

If N = 1, then K is a RUN number. If N = 2, we can solve in O(K3) using brute-forcing.

Subtask 2 (10 points)

It is possible to solve it with dynamic programming or backtracking.

Subtask 3 (25 points)

Let A be a non-decreasing number if its digits are in non-decreasing order. If we notate A = s1s2 . . . sN ,

then by thinking B = A − s1s1 . . . s1, B is also a non-decreasing number. Since B has fewer digits than A,

we can get an answer easily by applying the above repeatedly.

Subtask 4 (60 points)

In Subtask 3, we subtract the largest RUN number which is smaller than or equal to A. Find the largest

RUN number to subtract repeatedly like a greedy algorithm. The algorithm below shows one way to find it

faster.

1. Let ux be a x-digit number whose digits are all 1s. (e.g., u4 = 1111)

2. For k-digit number A, we only have to check uk−1, 2× uk−1, . . . , 8× uk−1, 9× uk−1, uk, 2× uk, . . . , 8×
uk, 9× uk.

The proof of the correctness of the algorithm and the existence of the solution is written below. The intended

solution is O(N2).

Proof of Algorithm Correctness

Let uk be a k-digit number whose digits are all 1s. (e.g., u4 = 1111)

Proposition Pn := “∀x ≤ un+1, x can be represented as the sum of (n+ 1) or fewer RUN numbers”.

Let’s prove Pn is always true (since un+1 is larger than any n-digit number).

1. P1 is true. 1, 2, . . . , 9 and 11 are all RUN numbers. 10 = 9+ 1, which can be represented as the sum of

two RUN numbers.

2. Assume Pn−1 is true, then Pn is true. Let’s define m as a given number.

• If m = un+1, it is clearly true.

• If m < un+1, then m ≤ un+1 − 1 = 10 × un. Choose the maximum number a × un among

0, un, 2un, . . . , 9un, which is smaller than or equal to m. Then m − a × un ≤ un. Since Pn−1

is true, we can represent m − a × un with the sum of n or fewer RUN numbers. Therefore,

m = (m− a× un) + a× un can be represented as (n+ 1) or fewer RUN numbers. ■
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Problem B. Sequence and Queries

Problem Idea: Seyun Roh (knon0501)

Preparation: Seyun Roh (knon0501)

Subtask 1 (8 points)

The following equality holds for 1 ≤ i, j ≤ n and 1 ≤ k ≤ min(n− i+ 1, n− j + 1):

f(i, j, k) =

1 if f(i, j, k − 1) = 1 ∧ si+k−1 ≤ sj+k−1

0 otherwise

and f(i, j, 0) = 1.

Therefore, all f(i, j, k) can be calculated in O(n3).

Subtask 2 (92 points)

Let’s define g(i, j) as follows:

g(i, j) =

min(n−i+1,n−j+1)∑
k=1

f(i, j, k)

Then, the following equality holds for 1 ≤ i, j ≤ n:

g(i, j) =

g(i+ 1, j + 1) + 1 if si ≤ sj

0 otherwise

and g(i, n+ 1) = g(n+ 1, j) = g(n+ 1, n+ 1) = 0.

Therefore, the sum of all g(i, j) can be calculated in O(n2) by using dynamic programming.
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Problem C. Construct a Graph

Problem Idea: Yumin Park (flakepowders)

Preparation: Yumin Park (flakepowders)

Subtask 1 (9 points)

If there exist i, j, k such that Di,j +Dj,k < Di,k, then the length of the path from i to k through j is less

than Di,k, so a graph satisfying the condition does not exist.

Otherwise, a complete graph with the weight of the edge connecting i and j being Di,j satisfies the condition.

Subtask 2 (19 points)

If an edge exists between two vertices u, v in the constructed graph, the weight of that edge must be Du,v.

• If the weight is less than Du,v, the shortest path length between u, v will become less than Du,v.

• If the weight is greater than Du,v, this edge will not affect any shortest paths. This is because a path

with the shortest path between u, v instead of this edge will always be shorter. Since the goal is to

minimize the total weight of the edges, there is no reason to include this edge.

Therefore, we can think of Du,v as the cost of connecting vertices u, v. Here’s how to construct the graph:

Iterate through the pairs of vertices (u, v) in ascending order of Du,v. For each pair (u, v), check if the length

of the current shortest path between u and v is greater than Du,v. If it is, you must directly connect the

two vertices with an edge of weight Du,v. This is because any other remaining vertex pairs that are not yet

connected have a connection cost of Du,v or more, so they cannot affect the shortest path between u and v.

After adding the edge, update the shortest paths that pass through this new edge in O(N2) time.

After iterating through all elements of D, verify if the shortest paths in the constructed graph are correct.

If they are, return the graph. Otherwise, return that no graph satisfies the conditions.

Subtask 3 (72 points)

There’s no need to manage the shortest paths in the graph we’re constructing. This is because when iterating

a vertex pair (u, v), the shortest path length between any pair of vertices (i, j) with Di,j < Du,v will already

be equal to Di,j .

• This is obvious if i and j are directly connected.

• If i and j were not directly connected, it implies that the shortest path length between them was

already Di,j .

Also, if a path of length Du,v exists between u and v without directly connecting them, the weights of the

edges forming the path will be strictly less than Du,v. Therefore, if any vertex m(m ̸= u, v) is on such path,

it must satisfy Du,v = Du,m+Dm,v. The existence of such vertex is equivalent to the existence of such path,

and we can check it in O(N) time.
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Problem D. Closet

Problem Idea: Yerin Lee (abra_stone)

Preparation: Yerin Lee (abra_stone)

Subtask 1 (4 points)

Let’s fix k. The answer would be the maximum of max1≤j<k(dj − dj+1) and maxk≤j<N (dj+1 − dj). We can

solve this by maintaining prefix/suffix max for every 1 ≤ k ≤ N in O(1).

Subtask 2 (21 points)

From this subtask, we will perform a binary search on x. Now we only need to solve the decision problem of

whether there exists a subsequence of length at least N −M that forms an almost beautiful closet.

Define dp[u][0] as the maximum length of subsequence i1 < i2 < · · · < lp = u such that dij −dij+1 ≤ x for all

1 < j < p. Simillarly, define dp[u][1] as the maximum length of subsequence ip = u > ip−1 > · · · > i1 such that

dij+1−dij ≤ x for all 1 < j < p. The maximum length of a beautiful closet would be maxi(dp[i][0]+dp[i][1]−1).
We could solve dp[u][0] as dp[u][0] = maxv<u,dv−du≤x(dp[v][0] + 1).

dp[u][1] could be solved similarly. Each decision problem can be solved inO(N2) time, resulting inO(N2 logX)

time complexity solution. (X = max(ci))

Subtask 3 (16 points)

Here, we extend the solution for subtask 2.

When solving dp[u][0] in ascending order of u, maintain dp′[y] = maxv<u,dv=y dp[v][0]. Now we can solve dp

values by dp[u][0] = maxy−du≤x dp
′[y] + 1. dp[u][1] could be solved similarly in descending order of u.

Each decision problem can be solved in O(NX), resulting in O(NX logX) time complexity solution. (X =

max(ci))

Subtask 4 (59 points)

Speed up the dp transition of subtask 3 using the segment tree. First, use coordinate compression to reduce

the range of di into O(N). Then, by increasing u, maintain a segment tree that maintains dp′.

Each decision problem can be solved in O(N logN), resulting in O(N logN logX) time complexity solution.

(X = max(ci))
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Problem E. Two Histograms

Problem Idea: Geunyoung Jang (azberjibiou)

Preparation: Geunyoung Jang (azberjibiou)

Subtask 1 (30 points)

Let’s simplify the condition for the 3rd grid. Since (A ∪ B)C = AC ∩ BC , squares that are colored white

should be a union of two white histograms, one falling from the top and one progressing from right to left.

For every white cell, every cell right to it should be white, or every cell above it should be white. So no white

cell has a black cell right to it and a black cell above it. Let’s call this structure “L structure”.

If we color a subset of cells of the third grid without making an L structure, we can color the rest without

making an L structure. This can be done by coloring a cell white if and only if there is no black cell above

it or right to it.

Now let’s color the ends of K × 1 rectangles. Let the WB rectangle be a rectangle where the left end cell is

colored white and the right end cell is colored black. Let the BW rectangle be a rectangle where the left end

cell is colored black and the right end cell is colored white.

For every K×1 rectangle, we can know whether there is a black cell right to the white cell regardless of how

we color the other rectangles.

There is no black cell right to its white end cell if and only if it is a WB rectangle and no rectangle is right to

the rectangle. Let a rectangle be a “special rectangle” if there is no rectangle right to it. Let other rectangles

be non-special rectangles.

For there to be no L structure, the white end cell of every non-special rectangle and special WB rectangle

should not have a black cell above it. Let’s call this condition as ⋆.

Consider rectangles that have the same x value. Every rectangle above a WB rectangle should be a WB

rectangle by ⋆. For p rectangles having the same x value, there are at most p + 1 ways of coloring the end

cells.

Define dp[i][j] as the maximum score by coloring end cells of rectangles whose left end cell has x value less

than or equal to i. There should be j BW rectangles whose left end cell is at x = i.

dp[i+1][k] = max(dp[i][j] + score[i+1][k]). score[i+1][k] is the score obtained by coloring rectangles whose

left end cell is at x = i+ 1, k BW rectangles below, and WB rectangles above.

By coloring j BW rectangles for rectangles having x = i left end cells and k BW rectangles for rectangles

having x = i + 1 left end cells, we should check whether it satisfies the ⋆ condition. This could be done in

constant time. Therefore we have a O(N2) dynamic programming solution.

Subtask 2 (30 points)

By some casework, dp transition could be done in linear time, resulting in O(N) solution.

Subtask 3 (40 points)

For the ⋆ condition, all we need to see is the end cells of the rectangle that are above or below the end cell of

a rectangle. After checking whether the rectangles are special, we can group the rectangles by the remainder

of the x value divided by K − 1. Now we can solve K − 1 cases of K = 2 instances.
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Problem F. Discount Event

Problem Idea: Youngwoo Park (flappybird)

Preparation: Youngwoo Park (flappybird)

Subtask 1 (10 points)

Let’s simplify the problem. The given cities and roads can be thought of as a weighted tree. For each query,

we need to find the diameter when the weight of the path ending at a given vertex in the tree becomes 0.

We can calculate the diameter of a tree in O(N) time complexity using dynamic programming. Let’s assume

the tree is rooted at vertex 1. Define dp1[v] as the longest distance from v to any descendants of v, dp2[v] as

a diameter of the subtree of vertex v.

The answer to the query is dp2[1].

These two values can be calculated by DFS in O(N) time complexity. There are Q queries, we can solve the

problem in O(NQ) time complexity.

Subtask 2 (24 points)

For each vertex v, let p be the parent vertex of v. Then, define dp3[v] as the length of the longest path

starting from p and going to a vertex that is a descendant of p but is not a descendant of v.

Consider the vertices that are descendants of p but are not descendants of v. For all these vertices x, let Sv

be the set of the length of all p − x paths. For each vertex v, calculate the greatest 3 elements of Sv. This

can be done in O(N) time complexity with DFS.

We can calculate the answer to the query for vertices v0(= 1), v1, . . . , vk by these two values.

If the diameter of the tree meets the given path, the answer is the sum of two different values of Sv1
∪ Sv2 ∪

· · · ∪ Svk . Otherwise, the length of the diameter is max{dp3[v1], dp3[v2], . . . , dp3[vk]}.
For all vertices, these values can be calculated in the order of DFS in linear time complexity.

Subtask 3 (27 points)

First, define dp4[v] as the diameter of the tree when v’s descendants (excluding v) are removed from the

tree. This can be calculated in O(N) time complexity using DFS.

For each query, let’s assume that vertex Xi is the parent vertex of vertex Yi.

We can classify the candidate paths of the diameter.

• Diameter includes (Xi, Yi) edge. The length of the diameter is dp3[Xi] + dp1[Y1].

• All vertices forming the diameter are descendants of v. The length of the diameter is dp2[Xi].

• None of the vertices forming the diameter are descendants of v. The length of the diameter is dp4[Xi]

The maximum value among the three cases is the answer to the query.
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Subtask 4 (39 points)

For each query, we can classify the candidate paths of the diameter.

• Diameter and uv path doesn’t have an intersection, and the closest vertex from the diameter among

uv path is u or v.

• Diameter and uv path doesn’t have an intersection, and the closest vertex from the diameter among

uv path is neither u nor v.

• Diameter and uv path has an intersection.

The first case can be calculated using dp2[Xi], dp2[Yi].

The second case is similar to the solution of subtask 2. We need to find the maximum value of dp3 among

the paths. To perform this, we can use a sparse table to speed up.

The last case is also similar to subtask 2. We can find the longest two paths which start from the XiYi path

using a sparse table. The sum of the two paths is the length of the diameter.

Total time complexity is O((N +Q) logN).
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Problem G. One, Two, Three

Problem Idea: Geunyoung Jang (azberjibiou)

Preparation: Geunyoung Jang (azberjibiou)

Subtask 1 (20 points)

Define c by replacing 3 with −1 from ai. Let S be a prefix sum of c. ci ≡ ai (mod 4).

Lemma 1. We can remove every element of the sequence if and only if SN ≥ 0 and SN is divisible by 4.

Proof. (→) For every removed segment, the sum of c is divisible by 4 and is greater or equal to 0.

(←) Let’s use induction on N .

If N ≤ 4, the sum of a is less than 12. Since ci ≡ ai (mod 4) and the sum of ci is divisible by 4, the sum of

a is divisible by 4. We can erase every element at once.

Now assume N > 4. If there is adjacent 3 and 1 or adjacent 3 and two 2s, remove the segment. Since this

does not change SN , we can apply the induction hypothesis.

Now assume 3 and 1 are not adjacent, and no segment is equal to 233, 323, 332. Since N > 4 and 3 and 1 is

not adjacent, SN > 0. From S0, S1, S2, S3, S4, there exists two value that has the same remainder by 4. Let

it be Sp, Sq. Sq − Sp is 4 or 8. If Sq − Sp = 8, then elements between p and q are 2222. By changing q into

p+ 2, we get Sq − Sp = 4. By removing this segment, SN remains greater than or equal to 0. By using the

induction hypothesis, we can remove all elements.

Assume we have decided whether we would remove elements from 1 to i. Then we could

1. Decide to not erase the next element, which is (i+ 1)th element.

2. Decide to erase a segment that starts from i + 1. In this case, the sum of c of the segment should be

greater than or equal to 0 and should be divisible by 4.

By using dynamic programming of minimum sum of a and maximum sum of b, we have a O(N2) solution.

Note that N ≤ 3000, so dynamic programming solution without observation would not pass, such as time

complexity with O(N3/w) using a bitset.

Subtask 2 (30 points)

For each removed segment, we need to find a way to erase every element. By the induction hypothesis, there

always exists a segment where the sum of a is 4 or 8 and maintains the sum of c greater than or equal to 0.

By recursively finding such segment in O(N), we have a O(N2) solution.

Subtask 3 (20 points)

Let’s define dp as (minimum sum of a,−maximum sum of b) to use the min function. Dynamic programming

transition works as the minimum of the following.

dpi = dpi−1 + (ai,−bi)

dpi = min
j<i, Sj≤Si

Sj≡Si (mod 4)

dpj

By speeding up the transition using a segment tree, we have a O(N logN) solution.
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Subtask 4 (30 points)

Let’s find a segment where the sum of a is 4 or 8 and the sum of c is greater than or equal to 0. Since SN

decreases as we remove a segment, a segment that could not be removed due to the condition of the sum of

c cannot be removed later. By using stack and sweeping from the first element to the last element, we could

repeatedly find a way to remove a segment that lasts at the element that we are tracking. This results in a

solution of time complexity of O(N).
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Problem H. Tree Kadane

Problem Idea: Jinhan Park (jinhan814)

Preparation: Jinhan Park (jinhan814)

Subtask 1 (10 points)

Let’s assume the tree is rooted at vertex 1. Let dp[i] be the maximum value of
∑

i∈S Ai, where S is a

connected subset of the subtree rooted at vertex i that includes vertex i. Given A1, . . . , AN , we can calculate

dp[1], . . . , dp[N ] using tree dp. The answer to each query is max(dp[i]), and the total time complexity is

O(NQ).

Subtask 2 (20 points)

If the degree of each vertex in the tree is less than 3, we can consider the tree as a one-dimensional array.

In this case, we just need to solve the problem with two types of queries: updating the value of a vertex and

calculating the maximum contiguous subarray sum. By using a segment tree to manage the sum of Ai, the

maximum prefix sum of Ai, the maximum suffix sum of Ai, and the maximum sum of contiguous subarray

of Ai, we can handle each query in O(logN) time and total time complexity is O(N +Q logN).

Subtask 3 (70 points)

Using Heavy Light Decomposition, we can split the tree into multiple chains. First, select a chain that

includes the root. Then, recursively connect the subtrees rooted at vertices connected by light edges to the

vertices in the chain. After completing this process, the tree will have a recursive structure where subtrees

are connected to the chain that includes the root.

Let’s manage the chains using a segment tree same as subtask 2. For each vertex i, let acc[i] be the sum

of max(cj , 0), where j is a vertex connected with vertex i by light edge, and cj is the maximum connected

subset-sum of the subtree rooted at j that includes vertex j. Similarly, let mx[i] be max(dj) where dj

is the maximum connected subset-sum of the subtree rooted at j. By constructing a segment tree using

Ai, acc[i],mx[i] for each chain, we can find the answer using segment tree operations on the chain that

includes the root.

Now, let’s consider the update query that changes Ai. Starting from the chain containing vertex i, update the

segment tree according to the changes in the chain. Then, propagate the updates up to the chain containing

the parent vertex of the chain’s top, updating acc[i] and mx[i] as needed. By managing mx[i] with a data

structure like std::multiset in C++ or a max heap, we can handle each update query in O(log2 N) time, as

we are updating each chain, acc[i] and mx[i] O(logN) times. The total time complexity is O(N +Q log2 N).
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