
2022 KAIST RUN Spring Contest PROBLEM A. SEQUENCE CONVERSION

Problem A. Sequence Conversion

Problem Idea: Eunsoo Choe (gs18!15)

Preparation: Jimin Ahn (retro3014)

Let {a′i} be the sequence, which satisfies that a′i is equal to xor sum of a1, a2, . . . , ai. Define {b′i} similarly.

If a′n ̸= b′n, the answer is −1. Otherwise, the answer is the number of index i such that a′i ̸= b′i.

Shortest solution: 325 bytes



2022 KAIST RUN Spring Contest PROBLEM B. ONTONGDAEJEON

Problem B. Ontongdaejeon

Problem Idea: Eunsoo Choe (gs18115)

Preparation: Eunsoo Choe (gs18115)

We can observe that the optimal way to use cash is using cash as soon as possible. If the amount of cash

is already decided, we can decide whether we can buy every items by simulating. Now, the answer can be

found with binary search.

Shortest solution: 402 bytes



2022 KAIST RUN Spring Contest PROBLEM C. TOO EASY COOKIE RUN

Problem C. TOO EASY Cookie Run

Problem Idea: Jimin Ahn (retro3014)

Preparation: Jimin Ahn (retro3014)

Subtask 1 (10 points)

Because max available X is small in this subtask, we can check if there are at least K interesting sections

for all X, starting from 0 and increasing it.

After adding X to all Ai, we can check if there are at least K interesting sections for given X by calculating

Ai +Ai+1 + ...+Aj for all pairs (i, j). By this, we can count the number of pairs that satisfies Ai +Ai+1 +

...+Aj ≥ M .

The total time complexity is O(XN2).

Subtask 2 (20 points)

We can check if there are at least K interesting sections for all available X, similarly to Subtask 1.

However, as N increased, we can not calculate Ai +Ai+1 + ...+Aj for all pairs (i, j).

Instead, if we find the smallest j that satisfies Ai +Ai+1 + ...+Aj ≥ M for the given i, we can say that for

all k ≥ j, Ai +Ai+1 + ...+Ak ≥ M , because array {Ai} consists of only non-negative integers.

Using this condition, we can calculate total number of pair (i, j) that satisfies Ai +Ai+1 + ...+Aj ≥ M by

only finding smallest j that satisfies the same condition for each i.

To find the smallest j that satisfies Ai+Ai+1+...+Aj ≥ M for the given i, we can use Two Pointers algorithm.

Starting from (i, j) = (1, 1), if Ai+Ai+1+...+Aj < M , we should increase j by 1. If not, Ai+Ai+1+...+Aj ≥
M , and we have found smallest j satisfying the condition for current i, so we should increase i by 1 and

continue finding smallest j for new i. In this algorithm i or j increases by 1 in single iteration, so this process

takes time complexity of O(N).

Therefore, total time complexity is O(XN).

Also we can use data structures such as Segment Tree, instead of Two Pointer algorithm to find smallest j

for all i. In this way total time complexity is O(XN logN).

Subtask 3 (30 points)

For given X, we can check if there are at least K interesting sections after adding X to all Ai, simply by

calculating Ai +Ai+1 + ...+Aj for all pairs (i, j). This has time complexity of O(N2).

Also, lets say Xmin is smallest non-negative integer X that satisfies the given conditions. For all X ≥ Xmin,

there are at least K interesting sections if we add difficulty X to all stages. Also for all X < Xmin, there

are less than K interesting sections if we add difficulty X to all stages. Using this condition, we can use

Parametric Search algorithm to find Xmin.
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Say that s ≤ Xmin ≤ e. Then, if we let m = ⌊ s+e
2 ⌋, if there are at least K interesting sections after adding m

to all Ai, Xmin should be at most m, so we can update e = m. If there are less than K interesting sections

after adding m to all Ai, Xmin should have bigger value than m, so we can update s = m + 1. As initial

values are (s, e) = (0,M), time complexity of parametric search algorithm is O(logM).

Total time complexity is O(N2 logM).

Also we should beware of overflow, because N ×M can exceed the maximum long long value.

Subtask 3 (40 points)

Using Parametric Search algorithm used in subtask 3, and Two Pointer algorithm used in subtask 2, we can

get full score with total time complexity O(N logM). Also we can use data structures such as Segment Tree

instead of Two Pointer algorithm, having total time complexity O(N logN logM).

Shortest solution: 383 bytes



2022 KAIST RUN Spring Contest PROBLEM D. SEQUENCE CONVERSION 2

Problem D. Sequence Conversion 2

Problem Idea: Jimin Ahn (retro3014)

Preparation: Jimin Ahn (retro3014)

Subtask 1 (20 points)

This subtask can be solved by brute-forcing. Using (x⊕ y)⊕ z = x⊕ (y ⊕ z), we can map current state into

binary array of length N , so total number of state in brute-force process is at most 2N .

The total time complexity is O(N2N ).

Beware of maximum number of operations, if we apply N − 2 operations, length of array is 2 so it is always

zig-zag array.

Subtask 2 (30 points)

Lets say we are making zig-zag array using first j integers. Last integer in this array must be Ai⊕Ai+1⊕...⊕Aj

for some i ≤ j.

Lets define

• DP [0][i][j] = minimum operations needed to make zig-zag array using first j integers, ending with

Ai ⊕Ai+1 ⊕ ...⊕Aj, and last integer in this array should be bigger than the integer before that.

• DP [1][i][j] =minimum operations needed to make zig-zag array using first j integers, ending with

Ai ⊕Ai+1 ⊕ ...⊕Aj, and last integer in this array should be smaller than the integer before that.

We can calculate these values by following ways.

• DP [0][i][j] = max(DP [1][k][i−1]+(j− i)) for k < i that Ak⊕Ak+1⊕ ...⊕Ai−1 < Ai⊕Ai+1⊕ ...⊕Aj .

• DP [1][i][j] = max(DP [0][k][i−1]+(j− i)) for k < i that Ak⊕Ak+1⊕ ...⊕Ai−1 > Ai⊕Ai+1⊕ ...⊕Aj .

After calculating DP [0][i][j] and DP [1][i][j] for all (i, j), answer is minimum value of DP [0][i][N ] and

DP [1][i][N ] for all i.

Total time complexity is O(N3).

Subtask 3 (50 points)

Lets say that we made zig-zag array using first i integers. Only important information here is the value of last

integer, whether if last integer smaller or bigger than the one before, and number of operations that are used.

If j operations are used to make first i integers into zig-zag array, and last integer is bigger than the one

before, we should only think about maximum value of last integer. As the next element added to the array

must have smaller value than the last integer, it is better to last with bigger value.

Lets define



2022 KAIST RUN Spring Contest PROBLEM D. SEQUENCE CONVERSION 2

• DP [0][i][j] = maximum value of last integer in zig-zag array using first i integers and having less than

j integers, and last integer in this array should be bigger than the integer before that.

• DP [1][i][j] = minimum value of last integer in zig-zag array using first i integers and having less than

j integers, and last integer in this array should be smaller than the integer before that

For k > j, we can update DP [0][k][t] with Ai+1 ⊕Ai+2 ⊕ ...⊕Ak if DP [1][i][t− 1] < Ai+1 ⊕Ai+2 ⊕ ...⊕Ak.

We can update DP [1][k][t] using similar idea.

As DP [0][i][j] ≤ DP [0][i][j + 1] for all (i, j) and DP [1][i][j] ≥ DP [1][i][j + 1], we can find biggest t using

binary search algorithm for every k, and update DP [0][k][t] and DP [1][k][t].

Total time complexity is O(N2 logN).

Shortest solution: 1505 bytes



2022 KAIST RUN Spring Contest PROBLEM E. COMPARING FRACTIONS

Problem E. Comparing Fractions

Problem Idea: Eunsoo Choe (gs18115)

Preparation: Eunsoo Choe (gs18115)

If both of A ≤ C and B ≥ D are satisfied together, we can decide which fraction is larger. Similarly, we can

also compare the fractions when A ≥ C and B ≤ D. Remaining case is A < C and B < D has same truth

value. Without loss of generality, we can assume that A < C and B < D. Let p = min{
⌈
C
A − 1

⌉
,
⌈
D
B − 1

⌉
}.

A
B < C

D is equivalent to A
B < C−pA

D−pB . p, C − pA, and D − pB are calculated with O(log p) operations. Now,

we can solve the problem recursively. The number of used operations is O(logA+ logB + logC + logD).

Shortest solution: 2699 bytes
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Problem F. Tree GCD

Problem Idea: Sungjae Im

Preparation: Sungjae Im

Subtask 1 (10 points)

For all 1 ≤ i < j ≤ N compute, all dist(i, j) in O(N2) time. Then, we can calculate∑
1≤i<j≤N

gcd(i, j, dist(i, j)

in O(N2 logN) time.

Subtask 2 (20 points) ∑
1≤i<j≤N

gcd(i, j, dist(i, j))

=

N∑
d=1

N∑
i=1

N∑
j=i+1

d · [gcd(i, j, dist(i, j)) = d]

=

N∑
d=1

N∑
i=1

N∑
j=i+1

∑
g|d

ϕ(g) · [gcd(i, j, dist(i, j)) = d]

=

N∑
d=1

N∑
i=1

N∑
j=i+1

∑
g|d

ϕ(g) · [g | gcd(i, j, dist(i, j))]

=

N∑
g=1

ϕ(g)

N∑
i=1

N∑
j=i+1

[g | gcd(i, j, dist(i, j))]

=

N∑
g=1

ϕ(g)

⌊N
g ⌋∑

i=1

⌊N
g ⌋∑

j=i+1

[g | dist(gi, gj)]

First, we can compute ϕ(g) for all 1 ≤ g ≤ N in O(N) time by using some algorithms such as linear sieve.

Thus, we have to get
⌊N

g ⌋∑
i=1

⌊N
g ⌋∑

j=i+1

[g | dist(gi, gj)]

for all 1 ≤ g ≤ N .

Since the given tree has no vertex having degree more than 2, the given graph is a line. Let’s say v is a leaf

of the given tree. Let’s denote d(i) = dist(v, i). Then, dist(i, j) = |d(i)− d(j)| for any vertex i and j. So,∑
1≤i<j≤N

gcd(i, j, dist(i, j))

=

N∑
g=1

ϕ(g)

⌊N
g ⌋∑

i=1

⌊N
g ⌋∑

j=i+1

[g | {d(gi)− d(gj)}]
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=

N∑
g=1

ϕ(g)

⌊N
g ⌋∑

i=1

⌊N
g ⌋∑

j=i+1

[d(gi) ≡ d(gj) mod g]

For all g, compute all (d(gi) mod g) where 1 ≤ i ≤
⌊
N
g

⌋
. After that, we can count the number of pairs such

that d(gi) ≡ d(gj) mod g. All these calculation takes O(
⌊
N
g

⌋
) time.

Therefore, total time complexity is

O(N) +

N∑
g=1

O

(⌊
N

g

⌋)
= O(N logN)

Subtask 3 (70 points)

Similar to the previous subtask, Thus, we have to compute

⌊N
g ⌋∑

i=1

⌊N
g ⌋∑

j=i+1

[g | dist(gi, gj)]

for all 1 ≤ g ≤ N .

Let’s fix g. Then, what we need to get is the number of pairs (gi, gj) such that dist(gi, gj) is divided by g.

Thus, get the virtual tree which contains all vertices with index multiple of g. This takes O
(⌊

N
g

⌋
log

⌊
N
g

⌋)
time. After that, we cam compute the number of the pairs in O

(⌊
N
g

⌋
log

⌊
N
g

⌋)
time using the centroid

decomposition or small to large technique.

Therefore, we can solve this problem in the time complexity of

N∑
g=1

O

(⌊
N

g

⌋
log

⌊
N

g

⌋)
= O(N log2 N)

In addition, some fast O(N log3 N) solution might be accepted.

Shortest solution: 1060 bytes



2022 KAIST RUN Spring Contest PROBLEM G. COUNTING RECTANGLES

Problem G. Counting Rectangles

Problem Idea: Jongyoung Lee (moonrabbit2)

Preparation: Jongyoung Lee (moonrabbit2)

Subtask 1 (30 points)

We will calculate the number of newly created rectangles after each query. To do this, we modify the algorithm

for calculating the number of black rectangles in a grid. In this algorithm, for each row, we calculate the

number of rectangles ending at this row by calculating the number of consecutive black cells ending at this

row for each column, then count the number of rectangles inside a histogram made from this sequence using

stack. This algorithm already gives a way to solve when you only append an element in A. When you also

append elements in B, you can do this algorithm in two directions: do the same thing with columns. The

time complexity is O(NM).

Subtask 2 (15 points)

We only need to calculate the answer in the final grid. For a rectangle (l1, r1, l2, , r2), this rectangle is a valid

black rectangle if minl1≤i≤r1 Ai +minl2≤j≤r2 Bj ≥ 0.

For each i, we can calculate the rightmost point l such that Al < Ai and leftmost point r such that Ar < Ai,

with breaking ties in a fixed order using stack. Then, the number of ranges such that minimum in the range

is Ai is (i − l + 1)(r − i + 1). Let X be the array of pairs (Ai, (i − l + 1)(r − i + 1)) in a sorted order. We

can calculate array X in O(N logN) time complexity.

We apply the same algorithm to B to obtain pairs Yj . Then, the answer is sum of Xi.y ∗ Yj .y for all (i, j)

such that Xi.x+Yj .x ≥ 0. This value can be calculated in O(N +M), since X and Y are sorted. Total time

complexity is O(N logN +M logM).

Subtask 3 (55 points)

Let the rightmost point l such that Al < Ai be Li, and leftmost point r such that Ar < Ai be Ri. We define

Si and Ei similarly with B. If current length of A is n and current length of B is m, the current answer is∑n
i=1

∑m
j=1(Ai+Bj ≥ 0)(i−Li+1)(min(Ri, n)− i+1)(j−Sj +1)(min(Ej ,m)− j+1) as Ri may be larger

than n since it is calculated with the final array.

As in subtask 1, we will calculate the number of newly created rectangles after each query. If n is increased

by 1(n − 1 to n), then the number of newly created rectangles are
∑n

i=1

∑m
j=1(Ri ≥ n)(Ai + Bj ≥ 0)(i −

Li + 1)(j − Sj + 1)(min(Ej ,m)− j + 1). Let this value be AddA.

We also define AddB as the number of newly created rectangle when m is increased by 1(m−1 to m), which

is
∑n

i=1

∑m
j=1(Ei ≥ m)(Ai +Bj ≥ 0)(i− Li + 1)(min(Ri, n)− i+ 1)(j − Sj + 1).

Now we should update AddA and AddB when n is increased. We can maintain AddA and AddB in a following

way. The case where m is increased can be done symmetrically.

• Let AddC =
∑n

i=1

∑m
j=1(Ri ≥ n)(Ei ≥ m)(Ai +Bj ≥ 0)(i− Li + 1)(j − Sj + 1).
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• For each i such that Ri = n−1, subtract (i−Li+1)
∑m

j=1(Ai+Bj ≥ 0)(j−Sj+1)(min(m,Ej)−j+1)

from AddA.

• For each i such that Ri = n − 1, subtract (i − Li + 1)
∑m

j=1(Ej ≥ m)(Ai + Bj ≥ 0)(j − Sj + 1) from

AddC .

• Add (n− Ln + 1)
∑m

j=1(An +Bj ≥ 0)(j − Sj + 1)(min(m,Ej)− j + 1) to AddA.

• Add (n− Ln + 1)
∑m

j=1(Ej ≥ m)(An +Bj ≥ 0)(j − Sj + 1) to AddC .

• Add AddC to AddB .

To do this in a fast way, observe that (j − Sj + 1)(min(Ej ,m) − j + 1) is a piecewise linear function for

m, and Ai + Bj ≥ 0 means that Bj ≥ −Ai, which can be expressed as a range in values. Therefore, if we

maintain these linear functions with a segment trees, each operation can be done in O(log(N +M)), solving

the problem in O((N +M) log(N +M)).

Shortest solution: 3046 bytes



2022 KAIST RUN Spring Contest PROBLEM H. STRANGE GRAPH

Problem H. Strange Graph

Problem Idea: Jongyoung Lee (moonrabbit2)

Preparation: Jongyoung Lee (moonrabbit2)

Subtask 1 (7 points)

As there is at most O(N2) edges, we may use Kruskal’s algorithm to calculate the minimum spanning forest.

Subtask 2 (23 points)

Assume that every elements in A are different, by adding different very small values for each element.

Let’s fix x = u mod K and y = v mod K, and calculate the minimum spanning tree of the subgraph created

by these edges.

For each u, it is enough to only consider edges to vertex v with largest Av,x such that Av,x < Au,y and

smallest Av,x such that Au,y < Av,x.

For each v, it is enough to only consider edges to vertex u with largest Au,y such that Au,y < Av,x and

smallest Au,y such that Av,x < Au,y.

To calculate the minimum spanning tree of the whole graph, we calculate the minimum spanning tree out

of edges of each subgraphs. There are O(NK) edges in total, so we can use Kruskal’s algorithm to calculate

answer in O(NK logNK).

Subtask 3 (46 points)

We use Borvuka’s algorithm. In each step, for each vertex u and x, we will find the vertex v such that

v mod K = x, v is in different component with u, and |Au,x −Av,u mod K | is minimal among those v.

We solve this subproblem for each components. For current component C, let Si,j be the set of Au,j where

u mod K = i and S(C)i,j be the set of Au,j where u mod K = i and u /∈ C. We can earn S(C)i,j by removing

Au,j where u mod K = i and u ∈ C from Si,j . Therefore, S(C) can be calculated in O(|C|K log N
K ) for each

C, if we maintain S with data structures which supports insertion and deletion in O(logN) like std::set.

Finding v for a fixed u and x can be done by finding smallest element larger than Au,x and largest element

smaller than Au,x on S(C)x,u mod K . To take care of edge deletions, if the found edge is deleted, we will

”skip” the current edge and try for second smallest/largest element, and so on.

The total number of skips are O(M), so each step can be done in O((NK +M) log N
K ), and the total time

complexity is O((NK +M) log N
K logN).
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Subtask 4 (24 points)

We also use another ”skip” for same components. Then, we can use the same starting position in Sx,u mod K

in every step, which can be calculated before applying Borvuka’s algorithm.

Since naively skipping is too slow, you should implement skipping smartly. One way of doing this is storing

the next vertex in different component for each visited vertex in same component.

The total time complexity is O((NK+M) logN). Fast implementations of O((NK+M) log N
K logN) solution

may also pass.

Shortest solution: 3645 bytes
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