
12th KAIST ICPC Mock Competition PROBLEM A. BUILDING BOMBING

Problem A. Building Bombing

Problem idea: Dongkyu Han (queued_q), Won Park (chunghan)

Preparation: Dongkyu Han (queued_q)

First solver: 아아악!!!원더에게서도망쳐야해요!!!티원따운!!! (Onsite, 91 min.), aeren (Open, 30 min.)

Total solved team: 7 (Onsite), 7 (Open)

For buildings on the left to building L, we only have to blow up the buildings that block building L from
being visible. The main problem is to solve for the buildings on the right. From now on, we will assume
L = 1.

We can solve the problem using dynamic programming. Let D[i, k, h] be the minimum number of buildings
to blow up only considering buildings 1 . . . i, and after blowing up, the number of visible buildings becomes
k and the greatest height among them becomes h.

We will add buildings one by one and calculate the corresponding DP values. There are three cases to
consider when adding building i to the set. We can make it visible by taking k − 1 visible buildings on the
left, where the greatest height is less than hi. Or, we can make it invisible either by blowing it up or hiding
it behind another building. The recurrence relation is as follows.

D[i, k, h] =


D[i− 1, k, h] + 1 for h < hi

min(DP [i− 1, k, h],minh′<h D[i− 1, k − 1, h′]) for h = hi

D[i− 1, k, h] for h > hi

This takes O(N2K) naively, so we have to do it efficiently. Suppose we have added buildings 1 . . . i so far.
We will store K arrays D[i, k, ∗] for k = 1 . . .K in K segment trees. Now, the task of adding a building to
the set becomes adding 1 to a range, querying the minimum in a range, and updating a point in a segment
tree. Each task can be done in O(logN) per segment tree using lazy propagation. Since there are K segment
trees and we will add N buildings in total, the time complexity is O(NK logN).

12th KAIST ICPC Mock Competition PROBLEM B. CONNECTING CABLES

Problem B. Connecting Cables

Problem idea: Eunsoo Choe (gs18115)

Preparation: Eunsoo Choe (gs18115)

First solver: bitKOIn (Onsite, 13 min.), tlwpdus (Open, 10 min.)

Total solved team: 12 (Onsite), 11 (Open)

Let [(x1, x2), (y1, y2)] represents the area has a boundary with (x1, y1) as a lower left corner and (x2, y2) as
a upper right corner.

Minimum cost for cable between [(x1, x2), (y1, y2)] and [(x′
1, x

′
2), (y

′
1, y

′
2)] is calculated as

max{min{x1, x
′
1} − max{x2, x

′
2}, 0}+ max{min{y1, y′1} − max{y2, y′2}, 0}.

Since the expression is independent of axis, we can calculate the sum of cost by adding costs in each axis.

The problem in 1D is solved by sorting and sweeping the intervals.

12th KAIST ICPC Mock Competition PROBLEM C. DOUBLE-COLORED PAPERS

Problem C. Double-Colored Papers

Problem idea: Jongyoung Lee (moonrabbit2)

Preparation: Jongyoung Lee (moonrabbit2)

First solver: N/A (Onsite), N/A (Open)

Total solved team: 0 (Onsite), 0 (Open)

There exists a very complicated solution only using suffix array, but here we explain the intended solution
using suffix automaton.

We build a suffix automaton for S and T , A and B. Then, all possible double-colored paper is a combination
of path in automaton of S starting from the root, and path in automaton of T starting from the root.

Our strategy is to fix the characters one by one: if we have found the prefix pfx of the answer string
ans, we can find the next character of ans, or conclude that pfx = ans if we can calculate the number of
double-colored papers with having pfx+ c as prefix, where c is a arbitrary character.

To do this, we should analyze the possible pair of paths given the string pfx. Let u be the vertex in A

reached when following the path pfx until there is no edge of desired direction, and v be the vertex in B

reached when following the path pfx, following the link edge while there is no edge of desired direction.

All possible endpoints of the first path are the vertices in the path in A from root to u, and all possible
endpoints of the second path are the vertices in the path in link tree of B from root to v. The two pair of
vertices are a valid pair if sum of the lengths they present is |pfx|. Be careful that vertices in B correspond
may present multiple lengths.

Note that we are finding the maximum possible length of prefix and suffix of pfx that is included in S and
T by this procedure, and we can maintain u and v while adding characters to the end of pfx.

With dynamic programming in A and B, we can calculate the number of paths starting from each vertex in
the automaton, cnt.

To count the number of pair of paths, note that the vertices in B that are included in a valid pair forms a
suffix of the path: we can also store the first vertex not included in the suffix. Let’s call it w. Then, the
number of pair of paths is sum of cnt values multiplied by the number of lengths the vertex is representing,
for the vertices in the path w − v in the link tree of B. w and v should have extra care, as only some suffix
of w is counted and some prefix of v is counted, depending on minimum and maximum length of possible
suffix of pfx.

With dynamic programming in link tree of B, we can calculate this value after adding character c to the
end, in a method similar to prefix sum. If we update u, v and w after each update, we can solve the whole
problem in O(26(|S|+ |T |)).

12th KAIST ICPC Mock Competition PROBLEM D. HISTOGRAM SEQUENCE 4

Problem D. Histogram Sequence 4

Problem idea: Jongyoung Lee (moonrabbit2)

Preparation: Jongyoung Lee (moonrabbit2)

First solver: (Onsite, 5 min.), tlwpdus (Open, 20 min.)

Total solved team: 12 (Onsite), 25 (Open)

If NL > A, then there is no answer.

Otherwise, there should exist some rectangle inside the histogram with width w and height A
w where w ≤ N

and A
w ≤ R. If such w exists, we can always construct the solution: first w rectangle have height A

w and
others have height L. Note that L ≤ A

w , so this construction always works.

When checking NL > A, you should be careful of overflows. There are various ways: using python, using
128-bit integers, or checking if L > bA

N c.

12th KAIST ICPC Mock Competition PROBLEM E. MAKING NUMBER

Problem E. Making Number

Problem idea: Jimin Ahn (retro3014)

Preparation: Jongyoung Lee (moonrabbit2)

First solver: 새쿼리와내기 (Onsite, 101 min.), tlwpdus (Open, 166 min.)

Total solved team: 3 (Onsite), 4 (Open)

Let’s define Ni as the i-th digit of N .

There is two cases for Z:

• Z = Y .

• There exists an unique index i, Zj = Yj for 1 ≤ j ≤ i− 1 and Zi > Yi.

The first case is checked easily by comparing counts of each digit.

For the second case, we can find an answer by binary searching the index i.

Let’s define I(j) as the maximum index satisfies following, corresponding to a given index j:

• I(j) ≥ j

• Yk ≥ Yk+1 for j ≤ k ≤ I(j)− 1

i.e. I(j) is the maximum index such that Nj∼I(j) is non-increasing sequence.

It can be checked that i ≤ j for given index j with following steps.

1. Calculate CI(d), the count of digit d in Yj∼I(j), for 0 ≤ d ≤ 9.

2. Calculate CP (d), the count of digit d in Y1∼j−1, for 0 ≤ d ≤ 9

3. Calculate CX(d), the count of digit d in X, for 0 ≤ d ≤ 9.

4. If CX(d) < CP (d) for some digit, result i < j.

5. Find the maximum digit d satisfies CP (d) 6= CX(d)− CI(d).

6. If there is no such d or CP (d) > CX(d)− CI(d), result i < j.

7. Otherwise, check the existance of d′ satisfies d′ < d and CP (d
′) > 0.

8. If d′ exists, result i ≥ j. If not, result i < j.

Each step can be proceed in the node of segment tree where the node of segment tree is consists of count of
each digit in each interval, l to r and l to min{I(l), r}.

Time complexity is O(D(N +Q logN)) where D is the number of digits.

12th KAIST ICPC Mock Competition PROBLEM F. ONE PATH

Problem F. One Path

Problem idea: Eunsoo Choe (gs18115)

Preparation: Eunsoo Choe (gs18115)

First solver: 아아악!!!원더에게서도망쳐야해요!!!티원따운!!! (Onsite, 136 min.), tlwpdus (Open, 236 min.)

Total solved team: 1 (Onsite), 1 (Open)

12th KAIST ICPC Mock Competition PROBLEM G. PERMUTATION ARRANGEMENT

Problem G. Permutation Arrangement

Problem idea: Kyung Chan Lee (kclee2172)

Preparation: Kyung Chan Lee (kclee2172)

First solver: cCc (Onsite, 95 min.), hyperbolic (Open, 182 min.)

Total solved team: 4 (Onsite), 1 (Open)

Suppose that there are non-adjacent 8 empty spaces left in the permutation. Then, each remaining number
has at least 4 squares that it can go to and each remaining square has at least 4 numbers that can be in the
square. Hence, from Hall’s marriage theorem, there exist the valid arrangement of remaining numbers.

Hence, when there are 15 or more empty spaces it is always possible to arrange the remaining numbers.
Therefore, the solution of greedily assigning numbers until there are 15 numbers left and using bit DP to
find the optimal assignment of last 15 numbers works.

From casework it is possible to bring the minimum number of empty spaces needed down and hence the
brute force solution of testing all the permutations in lexicographical order also works when implemented
well.

Time complexity is O(n).

12th KAIST ICPC Mock Competition PROBLEM H. SET AND SEQUENCE AND QUERY

Problem H. Set and Sequence and Query

Problem idea: Won Park (chunghan)

Preparation: Won Park (chunghan)

First solver: (Onsite, 16 min.), ainta (Open, 15 min.)

Total solved team: 12 (Onsite), 15 (Open)

12th KAIST ICPC Mock Competition PROBLEM I. SIMILARITY GRAPH

Problem I. Similarity Graph

Problem idea: Eunsoo Choe (gs18115)

Preparation: Eunsoo Choe (gs18115)

First solver: N/A (Onsite), ainta (Open, 253 min.)

Total solved team: 0 (Onsite), 2 (Open)

12th KAIST ICPC Mock Competition PROBLEM J. SQUIRREL GAME

Problem J. Squirrel Game

Problem idea: Dongkyu Han (queued_q)

Preparation: Dongkyu Han (queued_q)

First solver: 아아악!!!원더에게서도망쳐야해요!!!티원따운!!! (Onsite, 58 min.), tlwpdus (Open, 59 min.)

Total solved team: 8 (Onsite), 7 (Open)

Let di be the sequence of distances between the squirrels. That is, di = xi − xi−1 − 1, assuming there also
is a squirrel at x0 = 0. A single move decreases di by some amount and increases di+K by the same amount
for some i. (If di+K does not exist, we just ignore it.) We can decompose the game into K distinct chains of
distances in the form dKq+r, for each r in 0 . . .K − 1. Each chain is equivalent to a game where K = 1. If
we can calculate the Grundy number of each chain, we can solve the entire game using the Sprague-Grundy
theorem. However, it turns out that we don’t even need the Sprague-Grundy theorem to solve this problem.

Let us first solve for K = 1. From the right, label the squirrels with R and L alternatingly. We can pair
up two consecutive squirrels with the label L on the left and R on the right. We claim that the game is
equivalent to a Nim game where the heap sizes are the distances between each squirrel pair.

Suppose you have a winning strategy and have played accordingly. Your opponent has two choices: Move a
squirrel labeled L or labeled R. If your opponent moves a squirrel labeled R, it is equivalent to reducing the
heap size in the corresponding Nim game. Therefore, you are still in a winning position. If your opponent
moves a squirrel labeled L, which is increasing the heap size, you can move the paired squirrel of label R
so that the heap returns to the original size. Therefore, you are back in the winning position. Note that
the game has to end in finite turns because each move reduces the sum of xi. It means that your opponent
cannot indefinitely stall the game by always increasing the heap size.

When K > 1, the game is equivalent to playing K distinct Nim games, which is just a single Nim game with
all the heaps from each game.

12th KAIST ICPC Mock Competition PROBLEM K. TWO PATHS

Problem K. Two Paths

Problem idea: Jongyoung Lee (moonrabbit2)

Preparation: Jongyoung Lee (moonrabbit2)

First solver: N/A (Onsite), N/A (Open)

Total solved team: 0 (Onsite), 0 (Open)

First, with dynamic programming, we can find the result of following query F (u, v, w) in O(1): the farthest
vertex from u except for the directions v and w, where v and w are either vertex connected to u or 0(no
direction).

For a single query, let P be the path from u to v. Let w1 be the last vertex of P1 inside P , and w2 be the
last vertex of P2 inside P . If we fix some vertex c inside P , then we can divide the cases by three: both w1

and w2 is in c - u path, both w1 and w2 are in c - v path, or w1 is in c - u path and w2 is in c - v path.

With centroid decomposition, we make c be the root of the tree. Note that while P is inside the current tree,
now P1 and P2 may not be fully included in the tree, so we use F query to find the actual farthest vertex in
the tree.

First, let’s solve the case where w1 or w2 is c, and the case where w1 is in c - u path and w2 is in c - v path.
In this case, optimal choice of w1 and w2 is independent, so by calculating optimal w for each vertex using
dynamic programming(Using the F query), this case can be solved in O(1).

Now we solve the case where both w1 and w2 is in c - u path. The case where both w1 and w2 is in c -
v path can be solved symmetrically. In this case, if w1 is fixed, the optimal w2 is fixed, and can be found
by dynamic programming(Again using the F query). Also, the result value with w1 and w2 fixed can be
expressed as a line Ax+By+C for A,B values in each query, and C being a constant fixed for each query.
Therefore, we can solve this case with Convex Hull Trick in tree. You should be careful with the case u = w1.

The time complexity is O(N log2 N +Q logN).

12th KAIST ICPC Mock Competition PROBLEM L. VILLAGE PLANNING

Problem L. Village Planning

Problem idea: Jongyoung Lee (moonrabbit2)

Preparation: Jongyoung Lee (moonrabbit2)

First solver: N/A (Onsite), N/A (Open)

Total solved team: 0 (Onsite), 0 (Open)

K = 0 is easy: answer is A
(N2)
0 for each N .

K = 3 is a trick: the answers are equal with the case K = 2.

Now we only need to solve K = 1 and K = 2. First, we solve the case where Ai = 1 for all i: we just need
to count the number of possible graphs.

For both K = 1 and K = 2, we first count the number of possible connected components for each size, ci.
Then, we can count the number of ways to merge the components.

Let’s fix the number of components k, and label each component from 1 to k. Let size of component i be ni,

where
∑k

i=1 ni = N . Then, the number of possible ways would be
(

N
n1···nk

)∏k
i=1 cni

. Therefore, the number
of graphs with k connected components is

∑
n1+···+nk=N

(
N

n1···nk

)∏k
i=1 cni

. Finally, to remove the order of
the components, we divide the result by k!.

The above analysis tells us that if the exponential generating function of c is P (x), then answer’s exponential
generating function is

∑∞
k=0

P (x)k

k! = exp(P (x)).

When K = 1, each connected component is a tree. The number of connected components of size N is NN−2.

When K = 2, each connected component is a tree or a unicyclic graph. Let’s count the number of connected
unicyclic graph of size N .

The unicyclic graph is formed by a cycle and a rooted trees with each vertex in the cycle being a root.
Let Q(x) be the exponential generating function of NN−1. By a similar analysis to above, we can find the
exponential generating function of the number of unicyclic graphs as

∑∞
k=3

Q(x)k

k! × (k−1)!
2 =

∑∞
k=3

Q(x)k

2k =
1
2 (− ln(1−Q(x))−Q(x)− Q(x)2

2).

Now, the general case where 1 ≤ Ai < 998244353 is not too different: for each step, we are merging
components. Note that the number of simple paths with both vertices in the same component is fixed, and
the number of simple paths with two vertices in different components is fixed. Using this fact, you can just
modify the generating function before and after each step by multiplying A

(N2)
i and A

−(N2)
i in each terms

appropriately.

12th KAIST ICPC Mock Competition PROBLEM M. WINDOW ARRANGEMENT

Problem M. Window Arrangement

Problem idea: Kyung Chan Lee (kclee2172)

Preparation: Kyung Chan Lee (kclee2172), Eunsoo Choe (gs18115)

First solver: 아아악!!!원더에게서도망쳐야해요!!!티원따운!!! (Onsite, 53 min.), ainta (Open, 57 min.)

Total solved team: 5 (Onsite), 5 (Open)

This problem can be modeled as MCMF as following.

1. Create one source vertex, one sink vertex, one vertex for each room, and one vertex for each places
where we can put windows

2. Make edges connecting source vertex and rooms and give it capacity according to number of windows
needed and cost zero.

3. Make edges connecting rooms and potential window locations. Give the edge capacity one and cost
zero.

4. For each potential window location, connect it and the sink vertex twice. The first edge has capacity
one and cost zero and the second one has capacity one and cost equal to the discomfort we get when
we put two windows in this location (i.e. product of numbers of people in two rooms connected to this
window location)

And now running MCMF algorithm on this graph solves the problem. The time complexity is O(n2m2).

	Problem A. Building Bombing
	Problem B. Connecting Cables
	Problem C. Double-Colored Papers
	Problem D. Histogram Sequence 4
	Problem E. Making Number
	Problem F. One Path
	Problem G. Permutation Arrangement
	Problem H. Set and Sequence and Query
	Problem I. Similarity Graph
	Problem J. Squirrel Game
	Problem K. Two Paths
	Problem L. Village Planning
	Problem M. Window Arrangement

